Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping

Oct 23, 2019 SPLASH OOPSLA

Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, <u>Caroline Collange</u>, Fernando Magno Quintão Pereira

Welcome to the NISQ era

Noisy Intermediate-Scale Quantum computing — John Preskill

- Today: we have real quantum hardware
 - But too few, noisy, qubits to implement 1990's algorithms
 - A few near-term applications: quantum chemistry simulation
- Crossroads for the quantum computing field
 - Success → sustained investments toward more ambitious applications
 - Failure → quantum computing winter for the next 20-30 years

Compilers for quantum computing

- Existing and near-future architectures:
 - 10s to 100 qubits
 - No error correction
 - Low-level constraints on circuits: set of gates, qubit connectivity
- Need for new compilers
 - From abstract quantum circuits to low-level commands
 - Quantum counterparts of register allocation, instruction scheduling...
 - Different abstractions and constraints than classical compilers

Focus: the qubit allocation phase

- Map logical qubits to physical qubits
 - Need to meet hardware constraints: connectivity between physical qubits
 - Transform circuit to fit on given quantum computer
- Minimize runtime and gate count to minimize noise

Software: circuit on logical qubits

Hardware: physical qubits

Outline

- The qubit allocation problem
- Bounded Mapping Tree algorithm
- Evaluation

Computing abstraction: Quantum circuit

- Like classical circuit or dataflow graph, except:
 - Operates on qubits
 - Reversible: no creation, destruction, nor duplication of qubits
 - Starts by initialization, ends by measurement

Circuit subset for qubit allocation

Input: reversible quantum circuits described at gate level

- Between initialization and measurement : unitary gates only
- After decomposition into single-qubit and CNOT gates
- Expressed in QASM language

```
qreg l[2];
creg c[2];
x l[0];
h l[0];
cx l[0] l[1];
t l[1];
measure l[0] -> c[0];
measure l[1] -> c[1];
```

Limited-connectivity quantum computer

Target: superconducting qubit based quantum computers

- Constraints on which qubits are allowed to interact
- e.g. IBM QX2, 5 qubits

e.g. IBM QX5, 16 qubits

Qubit assignment is Subgraph Isomorphism

Can we label logical qubits with physical qubits so that all gates obey machine connectivity constraints?

- Known as the Subgraph Isomorphism problem
- "Easy part" of qubit allocation
- Already NP-Complete

 In practice, most circuits will need transformations to "fit" the connectivity graph

Circuit transformation primitives

Transformation

Effect on dependency graph (assuming no other dependency)

CNOT reversal

Outline

- The qubit allocation problem
- Bounded Mapping Tree algorithm
- Evaluation

1. Compute maximal isomorphic partitions

- Break circuit into solvable instances of subgraph isomorphism
 - Maximal: adding one dependency makes it unsolvable
- Approximated with bounded exhaustive search
 - For each partition, build collection of candidate mappings

2. Choose qubit mappings

Select one mapping in each partition

- Goal: minimize total number of swaps
- Can estimate the number of swaps from one mapping to another
- Solve using dynamic programming

3. Generate swap sequences

Generate the minimal number of swaps from one mapping to the next

- Equivalent to Token Swapping problem (NP hard)
- Use recently-proposed 4-approximation algorithm [Miltzow et al. 2016]
 - Complexity O(|Q|³)
 - Modified to take make untouched qubits undifferentiated
 - Also gives upper-bound in number of swaps used in step 2

Outline

- The qubit allocation problem
- Bounded Mapping Tree algorithm
- Evaluation

Evaluation and results

- Proposed Bounded Mapping Tree algorithm gives lowest cost on 94% of benchmarks
 - vs. IBM QISKit (ibm), Siraichi et al. Weighted Partial Mapper (wpm), Zulehner et al. A* search (jku), Li et al. SABRE (sbr), Zulehner. et al. IBM challenge (chw)
- Faster version (bmtF) within 2% accuracy, 3× faster on average

- Benchmarks from RevLib, Quipper and ScaffCC
- Target architecture IBM QX20 Tokyo

Conclusion

- Formulate qubit allocation based on know problems
 - Subgraph isomorphism
 - Token swapping
- Derive an efficient algorithm
 - Bounded search for subgraph isomorphisms partitions
 - Dynamic programming to assemble partition solutions
 - Token Swapping approximation
- Parameterized algorithm allows runtime-accuracy tradeoffs
 - Scales to 100 qubits
- Future directions
 - Support classical control flow
 - Within this framework, develop heuristics to scale further

Come play with qubit allocation online: http://cuda.dcc.ufmg.br/enfield/

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping

Oct 23, 2019 SPLASH OOPSLA

Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, <u>Caroline Collange</u>, Fernando Magno Quintão Pereira

