DCC

_—

DEPARTAMENTO DE
CIENCIA DA COMPUTAGAO

o/pilers
aboratory UEmMG

New Optimization Sequences for Code-Size
Reduction in LLVM

Fernando Magno Quintao Pereira, UFMG, Brazil - fernando@dcc.ufmg.br

Anderson Faustino da Silva, UEM, Brazil - anderson@din.uem.br

@techreport{Pereira20,

title = {New Optimization Sequences for Code-Size Reduction
in LLVM},

author = {Fernando Magno Quint\~{a}o Pereira and
Anderson Faustino da Silva},

year = {2020},

institution = {Universidade Federal de Minas Gerais},

number = {02-2020}

New Optimization Sequences for Code-Size

Reduction in LLVM

Fernando Magno Quintao Pereira and Anderson Faustino da Silva

November 14, 2020

Abstract

This report describes 22 new optimization sequences for LLVM.
They contain between 5 to 19 optimizations, with an average of 11
optimizations. Given any C program, at least one of them is likely to
outperform (or tie with) opt -0s and opt -0z. The report describes
the methodology to find these sequences, and points out links to scripts
and repositories that can be used to reproduce the experiments.

1 Methodology

1.1 Benchmarks

Experiments in this report use benchmarks from the ANGHA. This is a
collection of One Million compilable C programs [1]! mined from open-
source repositories. To find candidate sequences (see Section 1.2) we have
selected 1,500 representative programs from this collection, using the follow-
ing methodology:

1. Filter the 15K largest programs from the ANGHA collection. Size is
measured as the number of LLVM instructions produced at the -00
optimization level.

2. Cluster these programs into 1,500 groups, using K-Means [3]. Clus-
tering is applied on the feature vectors proposed by Namolaru et al[2].
These vectors consist of 56 program characteristics, such as number of
CFG edges and number of basic blocks, for instance.

3. For each cluster, choose the program classified as it centroid to be part
of the final benchmark suite.

! Available at http://cuda.dcc.ufmg.br/angha

1.2 Candidate Sequences

We shall derive a small set of optimization sequences from a larger collection
of candidate sequences. To find these promising sequences of optimization,
we proceed according to the following methodology:

1. For each one of the 1,500 representative programs, use GENS? to find
5,000 candidate sequences for these programs.

2. Select the best candidate sequence for each program.

3. Simplify the winning sequence for each program using a sequence re-
duction procedure [4]. Given an optimization sequence S and a pro-
gram P, this algorithm removes elements from S while the resulting
sequence yields the same benefits as S.

4. Out of this universe of 1,500 programs, we select the winning sequence
for each of them. Call this set Scondidate-

5. Try every sequence in Scqpdidate ON €very program, and collect the new
winners. Call this new set Sy;,. we have that |Sy:n| = 1, 290.

1.3 Covering Set

A covering set is a subset of the candidate sequences that beats the de-
fault optimization levels of LLVM (clang -0Os, clang -0z, opt -Os and
opt -0z) for every program in a given baseline. To find a covering set, we
consider the candidate sequences from Section 1.2, the benchmarks from
Section 1.1 and, as baseline, clang -0z. We find a covering set by modify-
ing a heuristic due to Purini and Jain [4]. We call our adaptation of their
heuristic “Best-K”. It works as follows:

1. Create a 1,500 x 1, 290 matrix M, with one row for each benchmark,
and one column for each candidate sequence. Each cell Myy[i, j] con-
tains the number of LLVM instructions that the i*" sequence yields
for the j** benchmark.

2. For every number K in the interval [5...100] do:

(a) use Best-K to find a set with K sequences that covers (i.e., beats
clang -0z for) most of the programs.

2GENS is a genetic algorithm implemented on pygmo (available at https://esa.
github.io/pygmo2).

(b) If we cannot increase the number of programs in which the cover
set wins against the baseline when going from ¢ to i 4+ 1, then
stop.

This methodology converged for K = 22. These 22 Sequences are given

in Figure 1. These sequences could not defeat clang -0z for 22 programs
in the

benchmark collection.

S00
S01

S02
S03
S04

S05

S06

S07
S08
S09
s10

s11
$12
13

S14

S15

S16
$17

S18
S$19
S20

S21

38
47

67
M
40

M

4l

80
35
34
69

51
31
58

53

71

31
32

58
37
65
48

-sroa -instcombine -early-cse-memssa -simplifycfg -instcombine -licm -indvars -simplifycfg -early-cse-memssa
-jump-threading -loop-rotate -mem2reg -licm -indvars -slp-vectorizer -gvn -instcombine -early-cse-memssa -
simplifycfg

-jump-threading -mem2reg -early-cse-memssa -simplifycfg -instcombine -gvn -loop-rotate -jump-threading -licm
-loop-idiom -simplifycfg -early-cse-memssa -loop-unroll -instcombine -ipsccp -simplifycfg

-gvn -loop-rotate -memz2reg -slp-vectorizer -instcombine -indvars -early-cse-memssa

-early-cse-memssa -tailcallelim -gvn -sroa -aggressive-instcombine -jump-threading -simplifycfg -instsimplify -
early-cse-memssa

-sroa -early-cse-memssa -licm -inferattrs -simplifycfg -jump-threading -indvars -memcpyopt -early-cse-memssa -
simplifycfg -aggressive-instcombine

-sroa -loop-unroll -simplifycfg -correlated-propagation -indvars -correlated-propagation -simplifycfg -instcombine
-gvn -simplifycfg -instcombine -early-cse-memssa -jump-threading -slp-vectorizer -gvn -bdce -simplifycfg
-mem2reg -tailcallelim -loop-rotate -slp-vectorizer -instcombine -slp-vectorizer -gvn -indvars -reassociate -mldst-
motion -simplifycfg -jump-threading -correlated-propagation -instcombine -mldst-motion -speculative-execution -
licm -gvn -simplifycfg

-mema2reg -ipsccp -jump-threading -licm -instcombine -gvn -jump-threading

-gvn -gvn -simplifycfg -instcombine -jump-threading

-mem2reg -loop-rotate -gvn -instcombine -indvars -simplifycfg -early-cse-memssa -jump-threading -gvn -loop-
unswitch -ipsccp -instcombine -simplifycfg

-instcombine -sroa -simplifycfg -indvars -early-cse-memssa -slp-vectorizer -mldst-motion -instcombine -licm -
loop-rotate -correlated-propagation -early-cse-memssa -simplifycfg

-early-cse-memssa -instcombine -mem2reg -slp-vectorizer -instcombine -sroa -simplifycfg -early-cse-memssa
-gvn -instcombine -simplifycfg -speculative-execution -loop-rotate -instcombine -jump-threading -inferattrs -gvn -
correlated-propagation -instsimplify -simplifycfg

-sroa -loop-rotate -reassociate -licm -instcombine -indvars -early-cse-memssa -mldst-motion -correlated-
propagation -jump-threading -simplifycfg -instcombine -early-cse-memssa

-licm -loop-rotate -bdce -simplifycfg -gvn -instcombine -simplifycfg -indvars -licm -speculative-execution -
simplifycfg -mem2reg -adce -gvn -instcombine -speculative-execution -sroa -simplifycfg

-instcombine -early-cse-memssa -indvars -sroa -licm -early-cse-memssa -simplifycfg

-mem2reg -mldst-motion -simplifycfg -instcombine -early-cse-memssa -ipsccp -simplifycfg -instcombine
-early-cse-memssa -sroa -correlated-propagation -early-cse-memssa -instcombine -reassociate -licm -early-cse-
memssa -simplifycfg -instcombine -jump-threading -dse -reassociate -instcombine -early-cse-memssa
-instcombine -gvn -loop-rotate -simplifycfg -jump-threading -early-cse-memssa -mem2reg -simplifycfg

-licm -early-cse-memssa -sroa -jump-threading -indvars -simplifycfg -instcombine -gvn -instcombine -
memcpyopt -loop-rotate -simplifycfg -early-cse-memssa

-mem2reg -simplifycfg -slp-vectorizer -gvn -instsimplify -simplifycfg -memcpyopt -gvn -dse -instsimplify

Figure 1: Sequences that form the cover set discussed in Section 1.3. The
second column reports the number of LLVM passes executed by each se-
quence. For some perspective, these numbers are, for the default sequences:
00 = 11; 01 = 229; 02 = 277; 03 = 281; 0s = 264; and 0z = 260 passes.

2 Validation

To validate the cover set seen in Figure 1, we have selected the 2!3 (8,192)
largest single-function programs from ANGHA(taken from http://cuda.
dcc.ufmg.br/angha/files/suites/angha_kernels_largest_10k.tar.gz).
In this section we analyze the following research questions:

RQ1 How often each sequence in Figure 1 beats opt -0s and opt -0z.

RQ2 How often each sequence in Figure 1 is provides the smallest target
program, i.e., is the winner.

RQ3 How often each sequence in Figure 1 is the sole winner.

2.1 RQ1 — Beats Os/Oz

Figure 2 shows how often each sequence in Figure 1 wins over the baseline
code-size reduction levels of opt. To give the reader some perspective, we
include in this experiment opt -00, which does not apply any optimization
on the target programs.

3000 2709

2500 2302
2178 2116

2000
1604
1477

1500 1368 1319
1140 1168 1201 1204

1008 979 1004 1040
1000 785

621

00 354 419 485 384

30
0

00 SO0 SO01 S02 SO3 S04 SO5 S06 SO7 SO8 SO9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

Figure 2: How often, in a universe of 8,192 programs, each sequence in
Figure 1 improves (strictly) onto opt -0s and opt -0z. The Y-axis shows
number of programs.

2.2 RQ2 — Is one of the Winners

Figure 3 shows how often each sequence in Figure 1 leads to the smallest
code. We compare all the 22 sequences, plus opt -00, opt -Os and opt
-0z. We observe that opt -0z is the most frequent winner. However, opt
-0s is outperformed by S18, which is substantially shorter.

4000

3512

3500

3000

2500

2000 -

1464 386

1500 7 1247

1156 1166

1000 7

500 -

00 Os Oz SO0 SO1 SO2 SO3 S04 SOS S06 SO7 SO8 SO9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

Figure 3: How often, in a universe of 8,192 programs, each sequence in
Figure 1 yields the smallest code (possibly with ties) when compared to all
the other sequences, plus opt -00, opt -0s and opt -0z. The Y-axis shows
number of programs.

2.3 RQ3 — Is one of Sole Winner

Figure 4 shows how often each sequence in Figure 1 wins over all the other
sequences, plus opt -00, opt -0s and opt -0z. Again, opt -0z is the most
frequent strict winner. However, opt -0s is outperformed by five sequences
in Figure 1.

1200 1110

1000

800

600

400

200

Os Oz S00 SO1 S02 SO3 S04 SO5 SO6 SO7 SO8 SO9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

Figure 4: How often, in a universe of 8,192 programs, each sequence in
Figure 1 yields the smallest code (without ties) when compared to all the
other sequences, plus opt -00, opt -0Os and opt -0z. The Y-axis shows
number of programs.

3 Discussion

The two default sequences used as baseline in Section 2, opt -Os and opt
-0z represent a tradeoff between size and speed. They usually yield shorter
codes than the performance-oriented optimization levels (-01, -02 and -03).
However, it is still relatively easy to find sequences of optimizations that
produce shorter binaries. Figure 5 shows such a program. This program,
taken from ANGHA, computes the sum of prefixes of a list of numbers.
Nevertheless, its semantics is immaterial for this discussion.

(a) Original program (b) opt -Oz (c) opt -S00
struct array {
int s;
int* v;

Yi

void prefixSum(
struct array *src,
struct array *dst
) A
int i, j;
int size = src->s;
if (0 < size) {
int* dst_v = dst->v;
i=0;
do {
int tmp = 0;
j=0;
if (3 < i) |
int* src_v = src->v;

do {
tmp += src_v([jl;
dst_v[i] = tmp;

J++;
} while (3 < i);
}
i++;
} while (i < size);
}
}

Figure 5: (a) Program that computes sum of prefixes of a list of numbers.
(b) LLVM bytecodes produced by opt -0z. (b) LLVM bytecodes produced
by opt -S00 (Sequence SO0 in Figure 1).

In this example, both, opt -0s and opt -0z lead to programs with
68 LLVM instructions. There are nine sequences in Figure 1 that yield pro-

grams with 28 instructions. Furthermore, only one sequence, S02, generates
a larger program, with 70 LLVM instructions. The default LLVM sequences
generate large programs due to unrolling. Both these sequences unroll the
outermost program loop twice.

Notice that this substantial code size reduction (68 vs 28 LLVM in-

structions) have been obtained with a much smaller number of passes. For
instance, SO0 causes the execution of 38 LLVM passes, whereas opt -0Os
runs 264, and opt -0z runs 260 passes.

References

[1]

Anderson Faustino da Silva, Bruno Kind, José Wesley Magalh aes,
Jerénimo Rocha, Breno Guimar aes, and Fernando Magno Quint ao
Pereira. Anghabench: a synthetic collection of benchmarks mined from
open-source repositories. Technical Report 01-2020, Universidade Fed-
eral de Minas Gerais, 2020.

Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Fre-
und. Practical aggregation of semantical program properties for machine
learning based optimization. In CASES, pages 197-206, New York, NY,
USA, 2010. ACM.

Mahmoud Parsian. k-Nearest Neighbors, page 264-275. O’Reilly Media,
Boston, USA, 2015.

Suresh Purini and Lakshya Jain. Finding good optimization sequences
covering program space. ACM Trans. Archit. Code Optim., 9(4), January
2013.

