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Abstract

In this article, we describe a novel methodology to extract semantic characteristics from protein structures using lin-
ear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify
protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions
using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as
documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in sam-
ples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%.
The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific
PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
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Introduction

Proteins are an essential part of organisms and partici-
pate in every process within the cell. They catalyze bio-
chemical reactions which are vital to metabolism, have
structural and mechanical functions, play a crucial role in
cell signaling and adhesion, and they are also involved in
immune responses (Nelson and Cox, 2005; Branden and
Tooze, 1999).

These macromolecules are organic compounds made
of amino acids arranged in linear chains and joined together
by peptide bonds between carboxyl and amino groups of
adjacent amino acid residues. The sequence of amino acids
in a protein is defined by the genetic code and is part of a set
of 20 standard residues most commonly found in living
creatures. An understanding of protein function is a crucial
link in the development of new drugs, better crops and even
in the development of synthetic compounds like biofuels.

Because of the rapid developments in genome se-
quencing technology and the inherently low throughput of
the experimental procedures to elucidate protein function,
the study of computational techniques which could help in

protein function understanding is definitely critical. Many
individual proteins of known sequences and structures
present challenges to the understanding of their function. In
particular, a number of genes responsible for diseases have
been identified but their specific functions are unknown.

3D structures can aid in the assignment of function,
motivating the challenge of structural genomics projects to
make structural information available for novel uncharac-
terized proteins.

Structure-based identification of homologues often
succeeds where sequence-alone-based methods fail, be-
cause in many cases evolution retains the folding pattern
long after sequence similarity becomes undetectable.

Many methods of function prediction rely on identi-
fying similarity in sequence and/or structure between a
protein of unknown function and one or more well-charac-
terized proteins. Alternative methods include inferring con-
servation patterns in members of a functionally uncharac-
terized family for which many sequences and structures are
known (Whisstock and Lesk, 2003).

In an effort to contribute to advances in solving this
problem, we propose a novel methodology to classify a
huge dataset of proteins into protein families using con-
served characteristics in structures of known function. We
strongly believe that an important component of protein
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structural signatures is the pattern of chemical interactions
between the chain residues in each family.

A contact map is a compact representation of the 3D
conformation of a protein. It is defined as a symmetric
square binary matrix in which the rows and columns are the
residues of a protein chain and each point represents the in-
teractions between the residues in the structure. Through a
contact map, we can derive information about where pro-

tein �-helices and �-sheets are located in a given chain and
also which parts of it are close to each other in 3D.

In the present work, we have built a matrix which rep-
resents a set of protein contact maps and, using linear alge-
bra, we factorize that and compute an approximation with a
specific rank which has fewer dimensions that the original
dataset. We then use latent semantic indexing techniques to
index and search the database. Up until now, we have only
tested our methodology with hydrophobic interactions.

The growing size of protein databases, such as the
PDB, provides strong motivation to apply this technique to
the protein classification problem. Even though indexing
such large datasets is a costly operation, it may be done
incrementally and, once it is finished, queries can be an-
swered efficiently.

Finally, using the similarity index used to answer the
queries, we will show that the metric was able to retrieve
myoglobins through a set of varied proteins with a preci-
sion of up to 80.64%.

Material and Methods

Database selection

We use two data mart sets to apply our methodology.
One is a sample dataset that is composed of five proteins of
which three are myoglobins and the remaining two are pro-
teins from different folds. We used the other database to
evaluate the performance of our methodology. It is com-
posed of fifty myoglobins and fifty proteins of varied folds
selected from SCOP (Murzin et al., 1995).

The selection of the proteins was made randomly
from the proteins of the same species and we tried to select
an approximate number of proteins of each species. The
non-myoglobins were selected also randomly from proteins
of similar size to myoglobins.

All of the biological data that came from the PDB and
the hydrophobic contacts were calculated with 7 Å cutoff as
proposed by Da Silveira et al., 2009. The complete list of
the proteins selected is displayed on the laboratory web site.

Building the contacts matrix

In order to use linear algebra for structural classifica-
tion of proteins, we had to convert contact maps into vec-
tors. In this work, from now on, the information about the
3D conformation of a protein in the contact map will be rep-
resented as a vector, which will be called a contact vector.

A contact map is a binary matrix. If the residues x and
y make a hydrophobic interaction, so the position (x, y) of
this matrix is 1, and is 0 otherwise. The contact vector is bi-
nary too and is a linearization of the contact map. The value
of the element i of this vector is calculated by the Formula
1, where b is the number of residues of this protein.

i = (x - 1)(b) + (y)

Formula 1. Linearization of the contact maps.

The length of the contact vector is b x b, where b is the
number of residues of the protein. As different proteins
have different amounts of residues, the length of their con-
tact vectors are also different. Consequently, it is necessary
to make all of them the same size to make a matrix. In order
to make all the contact vectors the same size, we take the
size of the largest contact vector and normalize all the other
contact vectors to this size.

After making all contact vectors the same size, we can
group them all together and obtain a n x m matrix, where n

is the number of proteins of the database and m is the size of
the largest contact vector, that is m = l2, where l is the num-
ber of residues of the biggest protein of our database. This
matrix is called contact matrix.

Indexing the proteins database through latent
semantic indexing

The contact matrix is a large matrix and it is possible
to take advantage of the implicit higher-order structure in
the association of terms with documents in order to im-
prove the detection of relevant documents on the basis of
terms found in queries (Deerwester et al., 1992).

Considering proteins as documents and contacts
(from contact vectors) as terms, our goal is to build a re-
trieval system which should be able to find conserved char-
acteristics in structures, represented by their hydrophobic
interactions, and use them to classify a huge dataset of fam-
ilies. The linear algebra method that we used is called La-

tent Semantic Indexing (LSI) and it works by performing
Singular Value Decomposition (SVD) of the contact ma-
trix.

All things considered, from a large matrix of term-
document association data, we construct a semantic space
wherein intramolecular interactions and proteins that are
closely associated and placed near one another. In other
words, we can plot in 2D or 3D point representatives of pro-
teins and contacts. SVD allows the arrangement of the
space to reflect the major associative patterns in the data,
and ignore the smaller, less important influences. For in-
stance, contacts that did not actually appear in a protein, the
atoms participating in its formation may still end up close to
one another in the space, if it is consistent with the major
patterns of association in the data.

In conclusion, position in space serves as a semantic
index and retrieval can be achieved by using the contacts of
a protein as a query to identify other proteins in the same
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space. Users retrieve the proteins in the neighborhood of
the query (Deerwester et al., 1992).

Defining the similarity metric for protein structure
comparison

A common measure of similarity is the cosine be-
tween the query (Q) and the document vector (D) which is
computed by the following:

cos � �
QD

Q D

Formula 2. Cosine between the query (Q) and the document vector (D).

Typically, the z closest documents or all documents
exceeding some cosine threshold are returned to the user. z

is an integer number that represents the number of proteins
that are similar to the query that you want to retrieve.

Classifying protein structures using the similarity
metric

Using that similarity metric, we propose a protein
structural classifier which retrieves proteins which are sim-
ilar to a query based on the metric. In other words, each pro-
tein of the database has to be compared against the whole
database. Finally we get, for each protein, all those ranked
by their similarity (nearness) to it.

To determine the effectiveness of this retrieval sys-
tem, we used a well-known statistical concept of Confusion

Matrix and Receiver Operating Characteristic (ROC)
curves, (Swets, 1988).

A confusion matrix (Provost and Kohavi, 1998) con-
tains information about actual and predicted class assign-
ments performed by a classifier and makes it possible to
evaluate the precision of classification. This matrix gives
the true-negative, true-positive, false-negative, and false-
positive rates.

ROC curves are another way to examine the perfor-
mance of classifiers. An ROC graph is a plot with the
false-positive rate on the X-axis and the true-positive rate
on the Y-axis. The false-positive rate is the number of nega-
tive instances predicted as positives divided by the number
of negative instances. The true-positive rate is the number
of positive instances predicted as positives divided by the
number of positive instances.

In the ROC space, the point (0,1) is the perfect classi-
fier: it classifies all positive cases

and negative cases correctly. It is (0,1) because the
false-positive rate is 0 (none), and the true-positive rate is 1
(all). The point (0,0) represents a classifier that predicts all
cases to be negative, while the point (1,1) corresponds to a
classifier that predicts every case to be positive. Point (1,0)
is the classifier that is incorrect for all classifications.

In many cases, a classifier has a parameter that can be
adjusted to increase true-positives at the cost of increasing
false-positives or decreasing false-positives at the cost of
decreasing true-positives. Each parameter setting provides

a (false-positive, true-positive) pair and a series of such
pairs can be used to plot an ROC curve. In our algorithms,
the parameter used is a threshold that we use to decide if a
protein is or is not of a given family.

An ROC curve is independent of class distribution or
error costs, and it encapsulates all information contained in
the confusion matrix, since false-negatives are the comple-
ment of true-positives and true-negatives are the comple-
ment of false-positives. These curves provide a visual tool
for examining the tradeoff between the ability of a classifier
to correctly identify positive cases and the number of nega-
tive cases that are incorrectly classified.

Another interesting feature of these curves is that the
area beneath them can be used as a measure of accuracy in
many applications. Another way of comparing ROC points is
by using a formula that equates accuracy with the Euclidean
distance from the perfect classifier, point (0,1) on the graph.

Classifier calibration methodology

There are two important parameters to be adjusted in
the system. The first one refers to the number of the singu-
lar values that is used to represent the data when we reduce
its dimensions.

The number of singular values has to fit all the real
structures in the data and try not to bring noise and redun-
dant information to the representation. To discover this
value, there is no simple rule but one way is to try all values
and choose the one that best represents the data (Elden,
2006). Each parameter setting provides a (false-positive,
true-positive) pair and a series of such pairs can be used to
plot a ROC curve. We have conduced these experiments
and plotted the ROC curves and found that, for myoglobins,
the optimum parameter value was 17 dimensions, as shown
in Figure 1.

The other parameter is related to the z number men-
tioned before, that is, how many proteins at the top of the
rank to predict as positives. Once more, this value can be
adjusted to increase true-positives at the cost of increasing
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Figure 1 - This figure shows the precision that we can obtain for each one
of the possible singular values using linear algebra.



false-positives or decreasing false-positives at the cost of
decreasing true-positives.

Mathematical approach

In this section, we present the main concepts of LSI
and SVD used to implement the proposed methodology.

Given an m vs. n matrix of documents and terms, A,

and rank (A) = r � min(m,n), the singular value decomposi-
tion of A, denoted by SVD(A), is defined as in Formula 3.

A = D S Tt

Formula 3. The SVD of the matrix A is defined by this Formula. It decom-
poses matrix A into three others matrices, D, S and Tt.

where DtD = TtT = In and S = diag (�1, ..., �n), �i > 0 for

1 � i � r, �j = 0 for j � r + 1. The r columns of the orthogonal
matrices D and T define the orthonormal eigenvectors asso-
ciated with the r nonzero eigenvalues of AAt and AtA, re-
spectively, (Deerwester et al., 1992; Berry et al., 1994;
Elden 2006).

Figure 2 presents a schematic of the singular value
decomposition for a mvs. n of documents by terms.

The matrix A can be approximated in another matrix,
Ak, by modifying the three matrices that were factored
above. From S matrix, the k largest singular values may be
kept and the remaining smaller ones set to zero, in order to
obtain the matrix Sk. To obtain the new matrices Dk and Tk

just keep the k first columns of the corresponding matrices
D and V. It is important for the LSI method that the derived
Ak matrix not reconstruct the original document term matrix
Ak exactly (Berry et al., 1994).

The SVD derives the latent semantic structure model
from the orthogonal matrix, S, of singular values of A.

These matrices reflect a breakdown of the original relation-
ships into linearly-independent vectors or factor values. In
some sense, the SVD can be viewed as a technique for de-
riving a set of uncorrelated indexing variables or factors,
whereby each term and document is represented by a vector
in k-space using elements of the left or right singular vec-
tors. See Figure 3.

The choice of the value of k is a difficult job because it
is related to dimension reduction. It has to be a value that
fits all the real structures in the data and but small enough so

that the noise and the redundant information do not fit in the
new representation.

It is important to emphasize that for modeling the
problem of structural classification of proteins through
their intramolecular interaction we represent the matrix A

as a matrix of documents by terms and not a matrix of terms
by documents as in Deerwester et al. (1992), Berry et al.

(1994), and Elden (2006). As said previously, the docu-
ments are the proteins and the terms are contact vectors rep-
resenting the intramolecular interaction in the protein. The
matrix A is done in this way just in order to make the pro-
cesses of their construction more intuitive. This change in
the meaning of rows and lines of matrix A doesn’t modify
the way that the singular value decomposition and the oth-
ers steps are performed. To make the correspondence of
this representation and the other one done in Deerwester et

al. (1992), Berry et al. (1994), and Elden (2006) just re-
place the name of the matrices documents with terms and
terms for documents.

Representing terms and documents in 2D or 3D

In order to visualize the distribution of proteins in
space and understand it, we can plot the documents and the
terms in the space.

Using the first column of D2 multiplied by the first

singular value, �1, for the x-coordinates and the second col-

umn of D2 multiplied by the second singular value, �2 for
the y-coordinates, the documents (protein) can be repre-
sented on the Cartesian plane. Similarly, the first column of

T2 scaled by �1 are the x-coordinates and the second col-

umn of T2 scale by �2 are the y-coordinates for the terms
(intramolecular contact). To represent it in 3D just do the
same thing for z-coordinates (Berry et al., 1994).

Queries

The three possible types of comparison between two
terms:

• Two documents
• Two terms
• Term and document
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Figure 2 - Schematic of the singular value decomposition of a rectangular
document by term matrix. A is the matrix of document by terms, or pro-
teins by their contact vectors; D has orthogonal, unit-length columns
(DtD = In); T has orthogonal, unit-length columns (TtT = In); m is the num-
ber of rows of A, or the numbers of proteins; n is the number of columns of
A; n is the number of columns of A, or the length of the contact vector; r is

the rank of A m � min(m, n).

Figure 3 - Mathematical representation of the matrix Ak. This matrix is an
approximation of the original document by term matrix using the k largest
singular values and their corresponding singular vectors. A is the matrix of
document by terms, or proteins by theirs contact vectors; D has orthogo-
nal, unit-length columns (DtD = In); T has orthogonal, unit-length columns
(TtT = In); m is the number of rows of A, or the numbers of proteins; n is the
number of columns of A; n is the number of columns of A, or the length of

the contact vector; r is the rank of A m m � min(m, n); k is the chosen num-

ber of dimensions in the reduced model (k � r).



In this work, we analyzed only how close two docu-
ments are. To do that, the matrix Ak is used since it is pre-
sumed to represent the primary reliable patterns underlying
the data in A. Consequently, the query, q, will be a docu-
ment, represented by its contact vector.

This user’s query must be represented as a vector in
k-dimensional space and compared to documents as can be
seen in Formula 4.

q qV Sk k� 	1

Formula 4. The user vectors are represented by this Formula, where q is
simply the vector of contacts in the user’s query, multiplied by the appro-
priate term weights.

Updating the database

Computing SVD of a large matrix is an expensive
task computationally and may be impossible due to mem-
ory constraints (Berry et al., 1994; Elden, 2006). If it’s nec-
essary to add new documents and/or terms in the matrix it’s
possible to do it without having to recompute the SVD.

This process is based in the existing latent semantic
structure, the current Ak. To add documents just calculate its
k-space representation and then append it to the set of exist-
ing document vectors or columns of Dk, as in Formula 5.

d d D Sk

t

k k� 	1

Formula 5. Cosine between the query (Q) and the document vector (D).

This process requires much less time and memory but
can have deteriorating effects on the representation of the
new terms and documents (Berry et al., 1994).

Example

In this section, we present a full example of the appli-
cation of the proposed methodology using five protein sam-
ples (3 myoglobins and 2 different structures). The analysis
starts with the contact matrix, which is analyzed by singular
value decomposition to derive the information that will be
used. It will decompose the contact matrix into three other
matrices of special form. These matrices have linearly inde-
pendent components.

Many of these components are not significant and may
be ignored, providing an approximate model with fewer di-
mensions. This makes it possible to represent the documents
and the terms by k factor values, in other words, by the loca-
tion of a vector in the k -space defined by the factors.

If the k value is low, just two or three factors, it is pos-
sible to view the distribution of proteins in space and under-
stand it more clearly. However, when there are just a few
factors, more factors have to be added to provide a better
representation instead of visualizing them in 2D or 3D.

Due to the dimension reduction and the removal of re-
dundant and/or noisy information by the method, it’s possi-
ble for proteins, with somewhat different profiles of term
usage, to be mapped into a similar vector and, more impor-
tantly, to find patterns of contacts that have been conserved
in proteins of the same family.

To present an example of how queries are carried out
with this example, we must represent a query as a k-dimen-
sional factor space. The query will be a protein represented
as a contact vector. After the query is transformed into a
document in k-dimensional space, it can be compared
against all others documents, and those with the highest co-
sines are the nearest vector and therefore the most similar
(Deerwester et al., 1992; Berry et al., 1994).

Table 1 shows a sample dataset. In this case, the docu-
ments are the proteins 1l2kA (a myoglobin of sperm
whale), 1emyA (a myoglobin of Asian elephant), 1ycaA (a
myoglobin of pig), 1ag6A (a plastocyanin) and 1b68A (an
apolipoprotein). Figure 4 shows these proteins and their
contact maps. The query will be the protein 1ycaA.

The entries in the term by document matrix are sim-
ply the contact vector of each protein normalized, as men-
tioned above. Such matrix could be used for the initial input
of the SVD analysis. The query will be the protein 1ycaA (a
pig myoglobin); in Figure 4 it’s possible to see its structure
and contact map.

After the SVD computation it is possible to visualize
the distribution of proteins in space, see Figure 5. The distri-
bution of selected proteins in the 2D space places all myo-
globins together, whereas plastocyanin and apolipoprotein
are placed apart from all the other proteins. Thus, this
method is capable of finding the pattern in the presentation of
proteins using their contact maps by grouping the proteins
from the same family, the myoglobins, and leaving apart the
proteins that are different from the majority.

To determine which proteins are most similar to the
query, we calculate the cosine of the vector the protein
1ycaA (the query) and the other proteins, see Table 2. Thus,
the proteins most similar to 1ycaA are the proteins 1emyA
and 1l2kA. These two proteins are myoglobins as in the
query. And the less similar proteins are the other two that
are not from this family.

Results

In this section we analyze how the proposed approach
performs in the retrieval of samples belonging to a given
protein family from a set of proteins of varied topologies.
We selected 50 samples of myoglobins and 50 samples
from a variety of different families randomly constrained
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Table 1 - Sample dataset consisting of five different proteins. The first
three proteins are myoglobins and the remaining are proteins from differ-
ent folds.

Documents (PDBId_Chain) Terms (contact vector)

1L2K_A 000...000000...10...0...100000........000

1EMY_A 000...000000...10...0...100100........000

1YCA_A 000...000000...10...0...100000........000

1AG6_A 000...110001...00...1...100011........000

1B68_A 000...100000...00...1...000000........000



only by the chain size: we selected only chains which have
between 100 and 200 residues as myoglobins have an aver-
age of 150 residues.

Our retrieval system receives a protein chain as a
query and returns all the proteins ordered by the similarity
to the query. In this way, if we use a myoglobin as a query,

we expect that a perfect classifier returns all the other 49
samples of myoglobins at the top of the rank and the pro-
teins of different topologies after that.

To access the precision of the system with the myo-
globin dataset and have a general view of the behavior of
the classifier, we plotted all the ranks in a single figure. In
Figure 6, we show all the ranks as lines and each column
represents a chain of the database. Notice that the figure
presents 100 columns which are the 100 positions of each
rank as the database has 100 elements and once you query
the system, it returns the whole database ordered. We can
also observe that we have 50 lines, each one representing
the rank of a specific myoglobin as a query. In this experi-
ment, we have used each of the 50 myoglobins as queries
and compared them to the 100 chains of the database, which
can be seen in the graph. A point in the picture means that

650 Gomide et al.

Table 2 - The cosine between the query (1YCA_A) vector and the other
proteins. Note how the cosine between the myoglobins is very high and the
cosine against the other two proteins is very low. The proteins set in italics
are non-myoglobins.

Protein Cosine Rank

1YCA_A 1 1

1EMY_A 0.9999999978 2

1L2K_A 0.9999928293 3

1AG6_A 0.1691321587 4

1B68_A 0.0015279203 5

Figure 4 - Different protein families and their contact maps. The protein 1ag6A (a) is a plastocyanin, 1b68A (b) is an apolipoprotein, 1emyA (c) is a
myoglobin of the Asian elephant, 1l2kA (d) is a myoglobin of sperm whale and 1ycaA (e) is a pig myoglobin. This protein is the document of this sample
dataset.

Figure 5 - A two-dimensional plot of documents and the query from this
sample dataset.

Figure 6 - This figure shows all the ranks as lines and each column repre-
sents a chain of the database. A point in the picture means that the chain in
that specific position of the rank is a myoglobin. The absence of point indi-
cates that the chain in that position is not a myoglobin.



the chain in that specific position of the rank is a myo-
globin. The absence of point indicates that the chain in that
position is not a myoglobin.

We can see that the majority of the myoglobins ap-
pear at the top of the ranking, and that the last 50 positions
are mostly non-myoglobin proteins.

Discussion

In this work, we describe a novel methodology to, us-
ing linear algebra, extract semantic characteristics from
protein structures to compose structural signature vectors
that we showed can be used to compare and classify protein
structures in fold families efficiently.

We have computed the traditional contact maps using
only hydrophobic contacts and a cut-off of 7Å. We then
converted them into vector signatures and normalized all
the vectors of the database to make them all the same size.
This was done by straining the maps and moving pixels
away.

Once all the contact vectors are the same size and are
considered protein signatures, we used this data to index the
protein database using latent semantic indexing. Consi-
dering proteins as documents and contacts as terms, we
built a retrieval system which is able to find conserved
characteristics in structures and have used it to classify pro-
teins.
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